A Posteriori Error Estimates for Higher Order Godunov Finite Volume Methods on Unstructured Meshes

نویسندگان

  • Timothy J. Barth
  • Mats G. Larson
چکیده

A posteriori error estimates for high order Godunov finite volume methods are presented which exploit the two solution representations inherent in the method, viz. as piecewise constants u0 and cellwise p-th order reconstructed functions R 0 pu0. Using standard duality arguments, we construct exact error representation formulas for derived functionals that are tailored to the class of high order Godunov finite volume methods with data reconstruction, R pu0. We then devise computable error estimates that exploit the structure of Godunov finite volume methods. The present theory applies directly to a wide range of finite volume methods in current use including MUSCL, TVD, UNO, and ENO methods [LEE 79, HAR 83, HAR 87, HAR 89, SHU 88, BAR 89, BAR 90, DUR 90, BAR 98, ABG 94, VAN 93]. Issues such as the treatment of nonlinearity and post-processing of dual (adjoint) problem data are discussed. Numerical results for linear advection and nonlinear scalar conservation laws at steady-state are presented to validate the analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Estimation and Mesh Adaptivity for Finite Volume and Finite Element Methods

Error representation formulas and a posteriori error estimates for numerical solutions of hyperbolic conservation laws are considered with specialized variants given for the Godunov finite volume and discontinuous Galerkin finite element methods. The error representation formulas utilize the solution of a dual problem to capture the nonlocal error behavior present in hyperbolic problems. The er...

متن کامل

ADER Schemes on Adaptive Triangular Meshes for Scalar Conservation Laws

ADER schemes are recent finite volume methods for hyperbolic conservation laws, which can be viewed as generalizations of the classical first order Godunov method to arbitrary high orders. In the ADER approach, high order polynomial reconstruction from cell averages is combined with high order flux evaluation, where the latter is done by solving generalized Riemann problems across cell interfac...

متن کامل

Error Estimates for the Staggered Lax-Friedrichs Scheme on Unstructured Grids

Staggered grid finite volume methods (also called central schemes) were introduced in one dimension by Nessyahu and Tadmor in 1990 in order to avoid the necessity of having information on solutions of Riemann problems for the evaluation of numerical fluxes. We consider the general case in multidimensions and on general staggered grids which have to satisfy only an overlap assumption. We interpr...

متن کامل

Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quasilinear elliptic problems

Two types of pointwise a posteriori error estimates are presented for gradients of finite element approximations of second-order quasilinear elliptic Dirichlet boundary value problems over convex polyhedral domains Ω in space dimension n ≥ 2. We first give a residual estimator which is equivalent to ‖∇(u − uh)‖L∞(Ω) up to higher-order terms. The second type of residual estimator is designed to ...

متن کامل

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002